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Abstract

Are you Richard? Are you Anne? We look at the strategic problem in the children’s guessing

game Guess Who, which is a form of zero-sum symmetric game with perfect information.

We discuss some preliminary strategic insights and formally derive an optimal strategy and

win-probabilities for the game. We discuss the first-mover advantage in the game and other

strategic aspects coming out of the optimal strategy. While the paper is based on the popu-

lar children’s game, our analysis generalises the actual game by allowing any initial game

state with an arbitrarily large number of starting characters. With the aid of these mathemati-

cal results you can now comprehensively thrash your young children and be a terrible

parent!

Introduction

Most readers will already be familiar with the children’s game Guess Who which forms the

basis for this article, either through having played the game during childhood, or having had

children who have done so, or perhaps both. The game was designed by Theora Designs and

was first manufactured by Milton Bradley in 1979. At the time of publication of this paper it is

presently manufactured and distributed by Hasbro. The game has been redesigned several

times and re-released in many forms. The structure of the game has remained the same since

its initial design and has been a staple in toy stores for over forty years.

Guess Who is a two-player guessing game teaching children rudimentary skills in logic. For

readers unfamiliar with the game, we set out a brief explanation. Each player has an identical

game-board showing the faces of twenty-four named characters. These characters have various

different characteristics—some are men, some are women, some have facial hair, some are

wearing hats, some have glasses, and so on. (Some versions of the game have characters that

are exclusively white, and other versions have characters that differ by race.) Each player ran-

domly selects a character from a set of cards that matches the characters on the game-boards.

Each player has a different character from the game-board and keeps this character secret

from the other player. Taking it in turns, each player asks a question about the other player’s

character that can be answered with a simple yes or no—e.g., “Are you wearing glasses?” (Usu-

ally the questions are framed as if each player is their character. Hence the language “Are

you. . .”.) After receiving a yes or no answer the player asking the question is then able to elimi-

nate incompatible characters on his game-board by placing these face down, so that only the

remaining face-up characters are possible characters that might be held by the other player. By

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0247361 March 10, 2021 1 / 14

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: O’Neill B (2021) Optimal guessing in

‘Guess Who’. PLoS ONE 16(3): e0247361. https://

doi.org/10.1371/journal.pone.0247361

Editor: Pablo Brañas-Garza, Universidad Loyola

Andalucia Cordoba, SPAIN

Received: June 3, 2020

Accepted: January 26, 2021

Published: March 10, 2021

Copyright: © 2021 Ben O’Neill. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: No data were used.

Funding: The author received no specific funding

for this work.

Competing interests: The authors have declared

that no competing interests exist.

https://orcid.org/0000-0001-6899-0483
https://doi.org/10.1371/journal.pone.0247361
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0247361&domain=pdf&date_stamp=2021-03-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0247361&domain=pdf&date_stamp=2021-03-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0247361&domain=pdf&date_stamp=2021-03-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0247361&domain=pdf&date_stamp=2021-03-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0247361&domain=pdf&date_stamp=2021-03-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0247361&domain=pdf&date_stamp=2021-03-10
https://doi.org/10.1371/journal.pone.0247361
https://doi.org/10.1371/journal.pone.0247361
http://creativecommons.org/licenses/by/4.0/


guessing the characteristics of characters, player narrows down the search through this process

of elimination. When one player is able to correctly guess the other player’s character as his

question, he wins the game; specific variations in rules for the final guess are discussed soon.

For many young children, Guess Who it is their first exposure to the basic logical idea of

eliminating a false hypothesis through contradictory information. As children progress in

their understanding of the game they can also learn some basic probabilistic intuition which

gives them a higher chance of winning the game. These features make the game a good intro-

duction to logical reasoning. As an object of academic study, the game is useful because it is a

simple discrete “search race” that bears resemblances to more complex problems in sports,

industrial competition, and other competitive ventures. In this regard, the game has two inter-

esting strategic aspects that occur in broader competitive problems: (1) the agents are able to

choose between more “conservative” and more “risky” strategies in their moves; and (2) the

agents are able to observe the progress of their competitor and adjust their own strategy

accordingly.

Formally, Guess Who is a “search race” in which each player is searching for an unknown

item which is known to be equiprobable from a finite group of objects. Search algorithms for

binary search are studied extensively in computer science and have led to the use of the “split-

in-half search” which operates by splitting the remaining objects evenly (or as close as possible

if there are an odd number of objects) on each search iteration (see e.g., [1–3]). (Much of the

literature in this area uses the term ‘binary search’ to refer to the split-in-half-search. This is an

unfortunate terminology, since it conflates an optimal search procedure within a binary choice

setting with the choice setting itself. To avoid this conflation of issues, we instead use the term

‘binary search’ to refer to any search done within the context of a set of items with a single

search-for item.) This same method is referred to as the “split-half heuristic” in psychology

and information theory (see e.g., [4, 5]). This search method maximises the expected number

of objects eliminated in each guess (equivalently, the expected information gain), and thereby

minimises the expected number of guesses taken to complete the search. In a regular search

problem without an opponent it is commonly used as the most efficient search method. How-

ever, in a search race the situation is complicated by the fact that the goal is to win the race,

rather than minimising the expected number of guesses. Intuitively, we would expect that the

efficient split-in-half search would be worthwhile for the player who is ahead in the race, but

might be suboptimal for the player who is behind, since he must take a risk at some point in

the race to try to overtake his opponent. We therefore expect the optimal strategy to be a mix-

ture of split-in-half search, and some “risky play” which seeks to overcome a disadvantage in

the game state.

Guess Who is advertised as being suitable for children aged six and up, but in the experience

of the present author it is also suitable (and fun) for younger children—essentially any child

who is old enough to ask and answer basic yes-no visual questions about faces. The game is

useful in teaching young children rudimentary logic and efficient searching. Psychological

research has analysed the types of questions asked by people of different age groups in this

kind of search game and in similar search games (see e.g., [4, 6–11]). This research has found

that young children tend to ask about a specific object (e.g., “Are you John?”) whereas older

children ask more efficient questions to eliminate more characters (e.g., “Are you wearing

glasses?”). Young children also ask ‘pseudo-specific’ questions, such as asking “Do you have a

beard?” when only one of the remaining characters has a beard. This suggests a focus on indi-

vidual objects by young children. Nelson et al. [12] find that ten-year olds have some ability to

use efficient searches based on observed characteristics, and they are able to adapt their search

method to changing characteristics to some degree, partially preserving efficient searching as

characteristics are exogenously changed.

PLOS ONE Optimal guessing in ‘Guess Who’

PLOS ONE | https://doi.org/10.1371/journal.pone.0247361 March 10, 2021 2 / 14

https://doi.org/10.1371/journal.pone.0247361


Defining the strategic problem in two variations of Guess Who

In this paper we will consider a generalised variant of Guess Who with a game-board that has

an arbitrary number of characters. We will look at the strategy of this game starting from any

given game-state, which is a specification of the number of remaining characters on the game-

board of each player. We assume that the only information available to each player is the state

of their own game-board and the series of questions asked during the game. This is sufficient

to allow each player to determine the state of the opponent’s game board other than determin-

ing which character they have eliminated due to holding that character. Each player is aware of

the game-state at each point and their decision is determined entirely by this game-state. To be

clear, we assume that there is no sneaky business insofar as using other information from the

opponent’s behaviour or anything else which would give a strategic advantage from matters

outside of the game. This assumption excludes strategies that infer opponent’s likely actions

from exogenous behavioural clues.

Each player is able to ask questions that will effectively seek to confirm or eliminate a given

subset of the characters remaining on his game-board. Although it is common for questions to

refer to characteristics like hair colour, facial hair, etc., it is always possible to refer to any cho-

sen subset by specification of the logical disjunction of the characters by name—e.g., “Are you

Max or Claire or Anne or Tom or . . . or John?” It is also possible to ask a simple ranking ques-

tion to refer to a subset of any chosen size—e.g., “Does your name come before the word

‘Milk’ in the alphabet?” (While strategically sound, this is not recommended when playing

with young children!) Under such an approach the names and characteristics of the characters

are arbitrary, and confer no useful information for the strategic decision. The strategic choice

for a player is to decide how many characters to test with his guess.

Suppose that a player is in the game-state (n, m) where he has n 2 N characters remaining

on his game-board and his opponent has m 2 N characters remaining, and it is his turn to

guess. We let 1�s(n, m)<n be the integer number of characters the player chooses as a subset

to confirm or eliminate with his guess, disallowing the empty or full sets. It is notable that

there is a partial symmetry to our problem—if the player chooses a subset of s>1 characters,

this is equivalent to choosing the other subset of n−s characters.

Our analysis will examine two variants of the game, using different rules for the “final

guess” to win the game. The official game rules provide that a player may use their move to

make a guess of the opponent’s character—if the guess is correct they win the game but if the

guess is wrong they lose the game (https://www.hasbro.com/common/instruct/GuessWho.

PDF). Correspondingly, the player does not win the game merely by narrowing down to a sin-

gle character until they make a “final guess” of this character. We will denote this “final guess”

as the move s = 0, and we note that this move is distinct from the move s = 1, where the player

also attempts to narrow down to a single character, but does not make this character his “final

guess” (and therefore does not win or lose at the end of the move). We will also examine a

rules variant where a player can guess a single character to win, but does not lose if they guess

incorrectly. (This rules variant is more fun when playing with young children, since they do

not lose the game so easily.) In this latter case we take the move s = 1 to be a winning move if it

succeeds in narrowing the characters to a single remaining character (and the move s = 0 is

not required for the analysis). In this variant the move s = 1 is not equivalent to s = n−1 since

the former guess allows the player to win on the present turn while the latter does not.) These

two rules variations are summarized in Table 1 below.

We consider the case where there is a fixed positive payoff for winning and an opposing

loss for losing leading to a zero-sum game (we refer to this particular type as a “win-loss”

game). Under this system of payoffs, each player seeks to maximise the probability of winning
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the game, and adopts a strategy with a view to this optimisation criterion. Since the probability

of winning depends on the strategy of the other player, this is a game-theory problem. Ours is a

two-person win-loss game with perfect information, which is presented in extensive form. Our

generalised problem is a specification of the set of games corresponding to every possible start-

ing game-state (n, m) with n 2 N and m 2 N. Each of these game-states is a subgame of the

larger generalised “game” and each subgame starting from a specified game-state is a two-per-

son finite win-loss game with perfect information. (Technically the larger generalised problem

is not a game (in the game theoretic sense) since it does not include specification of the starting

game-state (or specification of a mechanism to determine this). The generalised problem is

technically a countably infinite set of games for which each game is a sub-game of some larger

game in the set. If we were to specify a probabilistic mechanism for determining the starting

game-state then this would become a game in the proper technical sense.) Although each of the

game-states is non-symmetric, owing to the fact that there is a moving and a waiting player, the

generalised infinite “game” is symmetric in the sense that the infinite set of available strategies is

the same for each player and the payoff structure is symmetric for the two players.

Optimal strategy properties for two-person finite zero-sum games with perfect information

are well-known (see e.g., [13]). In particular, a win-loss game has a “minmax value” which is

the value that maximises the minimum win probability for each player over all possible strate-

gies. (In general this minmax value maximises the minimum “expected payoff” of each player.

In this problem the expected payoff is a positive linear function of the win probability so maxi-

misation of the expected payoff is equivalent to maximisation of the win probability. For the

present type of game the minmax theorem holds that these two values are equal for both play-

ers, and so there is a single minmax value—see e.g., Maschler, Solan and Zamir [13], Theorem

4.43, p. 115.) A strategy is “optimal” if it achieves this minimax value. Any combination of

optimal strategies for the two players constitutes a Nash equilibrium, and any such equilibrium

gives optimal strategies for the players. Since each subgame is also a finite win-loss game, the

same result ensures that any combination of optimal strategies for the two players is a sub-

game-perfect Nash equilibrium. The optimal strategy for our generalised game can therefore

be derived by backwards induction using a recursive method that makes use of this equilib-

rium criterion. Although these existence results do not guarantee an optimal strategy which is

a “pure strategy” (i.e., which involves only deterministic moves) we will show that our game

has a set of optimal pure strategies which are each best responses to all other optimal strategies.

Since our generalised game is symmetric, the solution is also symmetric, in the sense that both

players have the same set of optimal strategies. We will therefore obtain a single set S� of opti-

mal strategies, where any pair of strategies from the set constitutes a subgame-perfect Nash

equilibrium.

Table 1. Rules variants for analysis of Guess Who.

Official Rules (I) Variant Rules (II)

Winning and losing

the game

Guess a single character—correct guess

wins the game; incorrect guess loses the

game

Guess a single character—correct guess wins

the game; incorrect guess does not lose the

game

Allowable moves 0�s(n, m)<n 1�s(n, m)<n
Win condition (on

own turn)

s(n, m) = 0 (correct guess) s(n, m) = 1 (correct guess)

Loss condition (on

own turn)

s(n, m) = 0 (incorrect guess) None

Win probability

from state (n, m)

pI(n, m) pII(n, m)

https://doi.org/10.1371/journal.pone.0247361.t001
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Recursive win probabilities for two variants of Guess Who

Our strategic analysis of Guess Who allows any game-state (n, m) with n 2 N and m 2 N. Each

player adopts a strategy s � ðsðn;mÞjn 2 N;m 2 NÞ for the generalised game which is an

array of individual strategies for each possible game-state. We consider the case where the

player about to take his turn (the “moving player”) adopts strategy s1 and the other player (the

“waiting player”) adopts strategy s2. For brevity we let s�s1(n, m) denote the move chosen by

the moving player in the current game state. The game rules provide that each character is

selected at random; we take this as simple random sampling without replacement, so that each

character is marginally uniformly distributed over all characters not already eliminated.

Under the official rules (I) the moving player can guess s = 0, in which case he wins if he

guesses correctly (with probability 1/n) and loses if he guesses incorrectly. Alternatively, he

can guess s�1 in which case he cannot win with his present guess, but he still reduces the char-

acters on his game-board and passes the opportunity to move to his opponent. From these

options, we see that the probability that the moving player wins is given recursively by:

pI n;mjs1; s2ð Þ ¼

( 1

n
s ¼ 0;

s
n
� 1 � pðm; sjs2; s1Þð Þ þ

n � s
n
� 1 � pðm; n � sjs2; s1Þð Þ s � 1;

¼

( 1

n
s ¼ 0;

1 �
s
n
� p m; sjs2; s1ð Þ �

n � s
n
� p m; n � sjs2; s1ð Þ s � 1:

(Observe that in these equations the probability functions on the right-hand-side of the

equation now have the strategies reversed, since the waiting player becomes the new moving

player and vice versa.)

Under the variant rules (II) the moving player can guess s = 1, in which case he wins if he

guesses correctly (with probability 1/n) but does not lose if he guesses incorrectly. (Some versions

of the game rules allow a player to ask a question which would narrow the game-board down to a

single character without actually guessing this character for the win—e.g., asking “Are you wear-

ing a hat?” when there is only a single remaining character wearing a hat. Even if this is allowable,

it is never a rational strategy. In such cases it is always better to take a guess of the character that

would allow the player to win if correct—e.g., “are you Harold?” We assume that this is always

done.) If he does not win with his present guess he reduces the number of characters on his

game-board and passes the move to his opponent (who now becomes the moving player). Alter-

natively, he can guess s>1 in which case he cannot win with his present guess, but he still reduces

the characters on his game-board and passes the opportunity to move to his opponent. From

these options, we see that the probability that the moving player wins is given recursively by:

pII n;mjs1; s2ð Þ ¼

( 1

n
þ
n � s
n
� 1 � pðm; n � sjs2; s1Þð Þ s ¼ 1;

s
n
� 1 � pðm; sjs2; s1Þð Þ þ

n � s
n
� 1 � pðm; n � sjs2; s1Þð Þ s > 1;

¼

( 1 �
n � s
n
� p m; n � sjs2; s1ð Þ s ¼ 1;

1 �
s
n
� p m; sjs2; s1ð Þ �

n � s
n
� p m; n � sjs2; s1ð Þ s > 1:
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Since our generalised “game” is symmetric, it follows that both players must have the same

set of optimal strategies, and each optimal strategy pair is a subgame-perfect Nash equilibrium.

Hence, we are able to identify the optimal strategies using the recursive equations that come

from this equilibrium. Let S be the set of all possible pure strategies and let s� 2 S be an opti-

mal pure strategy. If both players adopt this strategy this gives a subgame-perfect Nash equilib-

rium characterised by the following requirement:

pðn;mjs�; s�Þ ¼ max
s2S

pðn;mjs; s�Þ for all n;m 2 N:

(In cases where we are concerned only with the optimal strategy for a game with a given

number of starting characters, we can restrict the range of n and m accordingly. However, it is

just as easy to proceed for the general case, allowing an arbitrary number of characters. This

gives the optimal strategies for specific game-states as a consequence.)

The above optimisation criterion leads us to a recursive equation for the optimal strategy.

Since both players are using the same strategy we drop the reference to the strategy s� and we

write the probability that the moving player wins simply as p(n, m) = p(n, m|s�, s�). It is also

helpful to conduct our analysis in terms of a(n, m) = nm�p(n, m). The optimization criterion

leads to the following simple recursive equations for the two variants. Under the official rules

(I) we have the recursion:

aIðn;mÞ ¼ max
0�s<n

aIIðn;mjsÞ;

aIðn;mjsÞ ¼

( m s ¼ 0;

nm � aIðm; sÞ � aIðm; n � sÞ s � 1;

Under the variant rules (II) we have the recursion:

aIIðn;mÞ ¼ max
1�s<n

aIIðn;mjsÞ;

aIIðn;mjsÞ ¼

( nm � aIIðm; n � sÞ s ¼ 1;

nm � aIIðm; sÞ � aIIðm; n � sÞ s > 1:

Any pure strategy satisfying these recursive equations for all game-states is an optimal pure

strategy of the infinite generalised problem. Duersch, Oechssler and Schipper [14] give some

existence results for pure strategy equilibria in two-person symmetric zero-sum games. They

find that these equilibria exist so long as the game avoids a certain kind of cyclical optimal

response similar to what arises in the game of Rock-Paper-Scissors. In our case the existence of

a pure strategy solution is guaranteed by the fact that each maximisation in the above recursive

equations is done over a finite set of possible guesses and each is purely recursive based on past

solutions (i.e., there is no cyclic relationship in the equations). This ensures that there will be a

set of guesses for each game-state that are optimal and thereby combine to yield an optimal

strategy. In fact, we will see that—for game states that are not too small—there are multiple

pure strategies that are optimal, since maximisation of the win-probability in the first equation

does not always give a unique optimal guess.

We can obtain the optimal strategy by solving the above recursive equations using back-

wards induction, starting with the case where the moving player has a single remaining charac-

ter. In this case we know that the player will guess this remaining character and will be correct,

thereby winning the game. For all m 2 N this gives us s(1, m) = 1 with corresponding win-

probability p(1, m) = 1 giving a(1, m) = m. (This applies under both variants of the game.)
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Starting with this baseline case and using the technique of backwards induction we can

obtain the win-probability function under optimal strategy. Matrices showing the resulting

functions aI and aII for values 1�n, m<24 (i.e., over all game states in the standard board

game) are shown at the end of this paper.

Analysis of first-mover advantage and game-state advantage

The recursive formulae in the previous section allow computation of the win-probabilities for

both rules variants under optimal play. Using these win-probabilities it is possible to quantify

the first-mover advantage and game state advantage that accrue to the moving player. These

can be defined as the symmetric and anti-symmetric parts of the win-probability function:

First� mover advantage F n;mð Þ ¼
1

2
pðn;mÞ þ pðm; nÞ� 1ð Þ;

Game� state advantage G n;mð Þ ¼
1

2
pðn;mÞ� pðm; nÞð Þ;

which are derived from the requirements:

p n;mð Þ ¼
1

2
þ G n;mð Þ þ F n;mð Þ F n;mð Þ ¼ F m; nð Þ G n;mð Þ ¼ � G m; nð Þ:

The first-mover advantage and game-state advantage under both rules variants is shown

below in the heatmaps in Fig 1. Intense green on the heatmap represents a high positive value

and intense red represents a high negative value. The symmetry of the first-mover advantage

and anti-symmetry of the game-state advantage is clearly evident in the heatmaps.

As can be seen from Fig 1, the official rules provide a smaller first-mover advantage and a

smaller game-state advantage. This occurs because the special move for a “final guess” takes an

additional turn beyond the turns used to (safely) narrow down the characters, and so the game

is “slower” than under the variant rules. This slower game means that the first-mover advan-

tage and the game-state advantage are ameliorated to some extent. (It is interesting to note

that the rules of Guess Who provide that the youngest player should always move first. This

rule implicitly recognises the first-mover advantage in the game and attempts to ameliorate

this advantage by giving the first move to the player expected to use the most sub-optimal

play.) It is also interesting to observer that, aside from cases of low values for n and m, the first-

mover advantage under the official rules is higher in the bifurcating regions where the game-

state is uneven, whereas the first-mover advantage under the variant rules is higher where the

game-state is even. The win-probability is the combination of these two effects—it is shown in

Fig 2 below. As can be seen from the heatmaps in the figure, the first-mover advantage shifts

the line of fair game states away from those with no game state advantage, so that the fair states

do not occur on the main diagonal of the graph.

A standard game of Guess Who has twenty-four characters and each player eliminates his

own character from consideration before guessing. This means that the game starts at game

state (23, 23) (shown as the bottom-right corner of all the heatmaps). If both players play an

optimal strategy then the win probabilities for the first player under the two rules variants are:

Official Rules ðIÞ pI 23; 23ð Þ ¼
296

529
¼ 0:5595;

Variant Rules ðIIÞ pII 23; 23ð Þ ¼
349

529
¼ 0:6597:
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Although Guess Who has a first-mover advantage, it is possible to correct this to create a

“fair” game by altering the starting state of the game to one where there is a game-state advan-

tage to the waiting player that is equivalent to the first-mover advantage of the moving player.

The fair game-states where this occurs are shown in the Table 2 below. For example, under the

official rules one can create a fair game by allowing the waiting player to eliminate seven incor-

rect characters from their game board prior to the start of the game, so that the game begins in

game state (23, 16). This elimination of characters balances out the first-mover advantage of

the moving player.

The recursive formulae above allow easy derivation of matrices for aI(n, m) and aII(n, m)

for any range 1�n, m<U, which then gives the corresponding values for the win probabilities,

first-mover advantage and game-state advantage, under either rules variant. In the next section

we derive a non-recursive formula for the win probability and optimal pure strategies for the

variant rules.

Fig 1. First-mover advantage and game-state advantage for both rules variants (all plots are based on optimal play by both players).

https://doi.org/10.1371/journal.pone.0247361.g001
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The optimal pure strategies and their intuitive properties (variant

rules only)

We will conduct an analysis of the optimal strategy only for the variant rules (II). This is the

more interesting of the two cases, since it holds a closer resemblance to other “search race”

game theoretic problems in broader fields such as industrial competition. It also has smoother

properties for its win-probability function and a relatively simple form for its strategic optima,

which give some intuitive insight into the nature of a “search race” problem.

We present our optimality findings as a series of theorems, with all proofs in the S1 Appen-

dix. The strategic solution shown in this section was initially derived by the author using the

“guess and verify” method, by first observing that the forward differences aII(n, m+1)−aII(n,

m) have a simple form that can be expressed using a number series introduced in Theorem 1

below.

THEOREM 1: The win-probabilities when both players use optimal strategies are:

pII n;mð Þ ¼
aIIðn;mÞ

nm
aII n;mð Þ ¼

Xm

k¼1

minðn; ?kÞ;

where the values ?k are taken from the following series:

ð?kÞk2N ¼ ð1; 2; 3; 6; . . . ; 6

|fflfflfflffl{zfflfflfflffl}
3 times

; 12; . . . ; 12

|fflfflfflfflfflffl{zfflfflfflfflfflffl}
6 times

;

24; . . . ; 24

|fflfflfflfflfflffl{zfflfflfflfflfflffl}
12 times

;

48; . . . ; 48

|fflfflfflfflfflffl{zfflfflfflfflfflffl}
24 times

; . . .Þ:

Fig 2. Win probabilities for both rules variants (all plots are based on optimal play by both players).

https://doi.org/10.1371/journal.pone.0247361.g002

Table 2. Fair game states with 1�n, m<24 (based on optimal play by both players).

Official Rules (I) (2,1), (2,2), (3,2), (4,2), (4,3), (5,4), (6,4), (8,5),

(10,7), (11,8), (12,8), (14,10), (16,11), (16,12),

(18,13), (20,14), (22,15), (23,16)

Variant Rules (II) (2,1), (3,2), (4,3), (6,4), (8,6), (12,8), (16,2)

https://doi.org/10.1371/journal.pone.0247361.t002
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THEOREM 2: We can rewrite the function aII in simplified form as:

aII n;mð Þ ¼

nm �
?n
2

n �
?n
3

� �
þ

1

3
� I n � 2ð Þ if ? n � ?m;

?m m �
?m
3

� �
þ

1

3
� I m � 2ð Þ if ? n > ?m:

8
>><

>>:

THEOREM 3: Any pure strategy s� is an optimal pure strategy (under the variant rules) if and

only if its guesses all fall within the range s
�
ðn;mÞ � s�ðn;mÞ � �s�ðn;mÞ with the following

lower and upper bounds:

s �ðn;mÞ ¼ 1 if n � 3;

s �ðn;mÞ ¼ Dn if n � 4 and ? n � ?m;

s �ðn;mÞ ¼ ð?mÞ=2 if n � 4 and ? n > ?m;

�s�ðn;mÞ ¼ 1 if n � 3;

�s�ðn;mÞ ¼ 1 if n � 4 and m � 2;

�s�ðn;mÞ ¼ 2 if n ¼ 4 and m � 3;

�s�ðn;mÞ ¼ n � s �ðn;mÞ if n > 4 and m � 3;

where the values Δk are taken from the following series:

ð�kÞk2N ¼ ð1; . . . ; 1

|fflfflfflffl{zfflfflfflffl}
3 times

; 1; 2; 3; 3; . . . ; 3

|fflfflfflffl{zfflfflfflffl}
3 times

; 4; 5; 6; 6; . . . ; 6

|fflfflfflffl{zfflfflfflffl}
6 times

;

7; 8; 9; 10; 11; 12; 12; . . . ; 12

|fflfflfflfflfflffl{zfflfflfflfflfflffl}
12 times

; 13; . . .Þ:

COROLLARY 1: The following strategy s� is an optimal pure strategy (under the variant rules):

s�ðn;mÞ ¼
maxð1; bn=2Þc if m � 3;

1 if m � 2:

(

COROLLARY 2: The following strategy s� is an optimal pure strategy (under the variant rules):

s�ðn;mÞ ¼
maxð1; bn=2cÞ if ? n � ?m;

maxð1; bð?mÞ=2cÞ if ? n > ?m:

(

REMARK: Another way of expressing this solution is as follows. For simplicity, consider the

case where n�4 and m�4. If 3�2k<n�3�2k+1 and m>3�2k for some integer k�0 then we have

?n = 3�2k+1�?m. In this case we have:

pII n;mð Þ ¼ 1 �
3 � 2k

m
1 �

2kþ1

n

� �

:

Alternatively, if n>3�2k+1 and 3�2k<m�3�2k+1 for some integer k�0 then we have ?n>3�2k

+1 = ?m. In this case we have:

pII n;mð Þ ¼
3 � 2kþ1

n
1 �

2kþ1

m

� �

:

These theorems set out the optimal strategies for Guess Who under the variant rules, and

the win-probabilities that result when both players use an optimal strategy. Theorems 1–2 give

the win-probability from any game-state in the case where both players play an optimal
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strategy. Theorem 3 shows us that there is a wide scope for the optimal strategy, with a range

of allowable guesses in each game-state. It is notable that each optimal strategy is in accordance

with our preliminary intuition regarding the strategies for a player who is ahead or behind in

the game. In particular, we can see from Corollary 1 that one optimal strategy is for the player

to use the ‘split-in-half search’ as his guess, taking s = max(1,bn/2c) for all his moves unless his

opponent has only one or two characters left. In this latter case the opponent is sufficiently

close to winning the game that the moving player should make a guess s = 1 of a single charac-

ter, even if this is not the split-in-half strategy from his position. This optimal strategy shows

us that the player who is behind in the game may delay his ‘risky search’ until quite late, when

his opponent has only one or two characters remaining on the game board.

On the other hand, it is possible to undertake risky play earlier in the game while still using

an optimal strategy. In particular, we can see from Corollary 2 that another optimal strategy is

for the moving player to use a ‘split-in-half search’ if he has a sufficiently small number of

remaining characters relative to his opponent (i.e., when ?n�?m ). If he does not have a suffi-

ciently small number of characters then it is optimal for the moving player to take a ‘risky

search’ where he takes s = max(1,b(?m)/2c) as his guess. Unlike the split-in-half search, this

guess does not minimize the expected number of characters eliminated, but it is equally opti-

mal due to the fact that the moving player is sufficiently far behind in the search race to war-

rant a risk being taken to overtake his opponent. Even in this case we see that the risky search

bears a resemblance in form to the split-in-half search—it is made based on a number of char-

acters related to the number the opponent has remaining.

The wide class of optimal strategies shows us that there is a degree of robustness in choosing

a strategy in Guess Who. However, the range of optimal strategies encompass the use of the

‘split-in-half search’ when the moving player has a sufficiently small number of characters, and

an allowance for a ‘risky search’ at some point if the game-state becomes sufficiently dire to

warrant this. The range of optimal strategies allows some deviation from this, but the optimal

strategies are all quite close to this archetype.

We have considered only pure strategies in our analysis. However, it is notable that, aside

from the pure strategies presented in Theorem 3, any probabilistic mixture of these optimal

strategies is an optimal mixed strategy that also leads to a subgame-perfect Nash equilibrium.

The set of optimal strategies includes any mixed strategy where the guess in each game-state is

chosen from a distribution with support over the range of guesses shown in Theorem 3. Like

the set of pure strategies, this set can also be considered as effectively being a single equilibrium

since every strategy in the set is an optimal response to all strategies in the set.

It is useful to be able to look at how the win-probability varies according to the game-state,

using the simplified expression in Theorem 2. This allows us to express the win-probability in

a form that is more amenable to further analysis. The last term in the expression is just a slight

correction term that applies in low game state values—it is not really of much interest. The

more interesting case occurs when n�3 and m�3. In this case we can write the win-probability

in terms of the quantities:

r ¼
n
m

dn ¼
n
?n

dm ¼
m
?m

:

For n�3 and m�3 we can use Theorems 1–2 to write the win-probability as:

pII n;mð Þ ¼

1 �
1

2
� r � A dnð Þ if r � dn=dm;

1

r
� A dmð Þ if r > dn=dm;

8
>><

>>:
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where A(x)�(3x−1)/(3x2). It is easy to show that ½<dn�1 and ½<dm�1 so that 2/3�A�3/4

in both parts of the expression. (This last inequality is derived by maximising and minimising

the function A over the specified range.) This is a narrow range, which means the main thing

that affects the win-probability is the ratio r, as we expect.

The pattern of values in the win-probability function should now be a bit more discernible.

In the case when n�3 and m�3, if the ratio r is held constant and the magnitude of the values

of n and m are increased (in proportion to each other), the function oscillates slightly due to

the changes in the function A, but it holds its value approximately. If the magnitude of the val-

ues of n and m is increased by an integer power of two then the win-probability remains

unchanged (i.e., pII(2
kn, 2km) = pII(n, m) for all k 2 N so long as n�3 and m�3) but if a differ-

ent multiple is applied then there can be a slight change in the function, owing to the oscilla-

tion in A that we mentioned. Fair game-states, where each player has an equal chance of

winning, occur in cases when r = 3/2 (dn = 1) or r = 4/3 (dm = 1). The win-probability for the

game has already been shown in Fig 2 (right heatmap) and this pattern in the values is discern-

ible from that plot.

Our present results also allow us to further elucidate the first-mover advantage and game-

state advantage for the variant rules shown in Fig 1 (right heatmaps). The first-mover advan-

tage under the variant rules accrues most intensely at the points where n = ?n = ?m = m (i.e.,

where r = dn = dm = 1). At these points we have GII(n, m) = 0 and FII(n, m) = 1/6 so that pII(n,

m) = 2/3 (except for the early game states with n�2 and m�2, where the first-mover advantage

and win-probability is higher, owing to minor correction terms). The game-state advantage

accrues most intensely when the player has substantially fewer characters than his opponent.

Since we have shown this advantage for the moving player, this occurs in game states where n
is substantially less than m (equivalently, where r is low).

Concluding remarks

In this paper we have derived win probabilities under optimal strategy for play for two variants

of the children’s game Guess Who, and we have derived corresponding results for the first-

mover advantage and game-state advantage for the players. (Our analysis was derived under

the assumption that the goal is to maximise the probability of winning the game.) We have

also derived the set of pure optimal strategies for the rules variant where an incorrect character

guess does not lead to loss of the game.

Guess Who is a type of ‘search race’ in which players seek to conclude their search success-

fully before their opponent does the same. The game using the variant rules is a discrete turn-

based game, but its structure bears a resemblance to other forms of search race occurring in

fields such as sporting competitions and industrial competitions. In particular, the game allows

players to vary their strategy between “conservative” and “risky” strategies, and adapt this

selection to the known state of progress of themselves and their opponent towards the goal. As

with many search problems, the optimal strategy involves using a ‘split-in-half search’ to mini-

mise the number of search steps. However, in game states where the other player is sufficiently

close to winning it can be optimal to depart from this method and instead engage in ‘risky

play’ which seeks to overtake the opponent in the search race.

The optimal strategy we have derived here is actually a set of pure strategies that are sub-

game perfect Nash equilibria of the relevant problem, and moreover, these form a single effec-

tive strategy set, insofar as all strategies in the set are best-responses to each other. We have

also shown that under optimal play there is a first-mover advantage, such that first player has

an advantage in the standard game of Guess Who. The probability of winning from any game
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state is easily calculated from the formulae in this paper, and has also been shown graphically

in a heat map.

We conclude this analysis by summarising some basic facts about the optimal strategy and

consequent win-probability in the two variants of Guess Who. Under optimal play there is an

advantage to the first-mover, though the advantage is larger in the variant rules than in the

official rules. If both players use an optimal strategy from the starting game state (23,23) then

the probability that the first player will win the game is pI(23, 23) = 0.5595 under the official

rules or pII(23, 23) = 0.6597 under the variant rules. Whilst the game is “unfair” it is possible to

alter the starting game-state to obtain a fair game. There are a number of fair game states in

the game where the waiting player has a game-state advantage that is of the same magnitude as

the first-mover advantage of the moving player, leading to a fair game.
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